

TYPICAL SERIES 700 DIMENSIONED OUTLINE

MANUFACTURED IN THE U.K.

The Series 700 Pressure and Differential Pressure switches offer accurate, reliable switching in a robust cast enclosure.

- RANGES FROM 16 mBAR TO 600 BAR
- HIGH OVERLOAD RATINGS
- SIMPLE MAINTENANCE
- SAFETY VENT RING

These switches provide excellent repeatability and long in-service life, under both continuous cycling and overload conditions, due to the mechanical restriction of diaphragm travel.
A standard feature of the design is the inclusion of a venting and isolation chamber which (in the unlikely event of the process diaphragm failure) will prevent the process entering the switching enclosure.
The setpoint of the switch is adjusted by means of a capstan head screw, located within the lower section of the enclosure.
With over 40 pressure and DP ranges and a wide selection of output switches, diaphragm and pressure chamber materials, and process connections (including flanges), Series 700 switches meet the requirements of a wide range of applications.
In addition HNL can offer many non-standard options (see back page for details) or customise this product to meet your unique requirements.
HNL's Series 700 switches can provide many years of maintenance free operation. All models are serviceable and spares, including diaphragm kits and output switch kits are readily available. Drawings and technical data sheets are supplied as standard.
Our extensive stockholding of components and the modular design allows this product to be supplied rapidly to meet customers delivery requirements.

QUALITY ASSURANCE

Designed and manufactured by HNL in accordance with BS EN ISO 9001:2000.
 SERIES 700 PRESSURE \& DP SWITCHES SPECIFICATIONS \& CODING

PRESSURE RANGES											
SETPOINT RANGES					DIAPHRAGM MATERIAL			CHAMBER PROOF RATING (BAR)			TYPICAL DIMENSIONS (CENTRELINE VERTICAL) HxWxD
RANGE CODE	MIN	MAX	UNITS	$\stackrel{\%}{\%}$RESET				ALUM.	ST.ST.	HAST.C	
					1	2	7	1	5	7	
714 PZ	-8	8	mBar	2				-	0.5	-	$254 \times 300 \times 316$
715 PZ	-15	15	mBar	2	-	-	-	-	0.5	-	$254 \times 300 \times 316$
724 PZ	-25	25	mBar	2				2	2	\square	$231 \times 185 \times 195$
725 PZ	-50	50				-	\bullet	2	2	\square	$231 \times 185 \times 195$
734 PZ	-125	125			\bullet	\bullet	\bullet	10	10	\square	
735 PZ	-250	250	mBar	2	-	-	\bullet	10	10	-	$224 \times 108 \times 114$
736 PZ	-500	500			\bullet	\bullet	\bullet	10	10	\square	
744 PZ	-0.6	0.6			\bullet	\bullet	\bullet	30	30	\square	
745 PZ	-1	1.4	Bar	2	-	\bullet	\bullet	30	30	\square	$199 \times 100 \times 81$
746 PZ	-1	6.0			\bullet	\bullet	\bullet	30	30	\square	
734 P	25	250			\bullet	\bullet	\bullet	10	10	\square	
735 P	50	500	mBar	2	-	\bullet	\bullet	10	10	-	$224 \times 108 \times 114$
736 P	100	1200				\bullet	\bullet	10	10	\square	$224 \times 108 \times 114$
737 P	300	3500			\bullet	\bullet	\bullet	10	10	\square	
744 P	0.1	1.4			\bullet	\bullet	\bullet	30	30	30	
745 P	0.2	3.0				-	-	30	30	30	$184 \times 100 \times 81$
746 P	0.7	7.0	Bar	2	-	\bullet	\bullet	30	30	30	(see dimensioned outline
74B P	1	10				-	\bullet	30	30	30	on front page)
747 P	2	21			\bullet	\bullet	\bullet	35	35	35	
754 P	1.2	12			-	\bullet	\bullet	-	250	250	
755 P	3	30			-	\bullet	\bullet	-	250	250	
756 P	7	70	Bar	3	-	\bullet	\bullet	-	250	250	$194 \times 100 \times 81$
757 P	20	210			-	\bullet	\bullet	-	350	350	
758 P	60	600			-	-	\bullet	-	1000	1000	
DIFFERENTIAL PRESSURE RANGES											
714 DPZ	-8	8	mBar	25	\bullet	\bullet	-	-	0.5	-	$264 \times 300 \times 316$
715 DPZ	-15	15			-	-		-	0.5	-	
724 DPZ	-25	25	mBar	25	\bullet	\bullet	\bullet	2	2	\square	$267 \times 185 \times 195$
725 DPZ	-50	50	mBar	2.5	-	-	\bullet	2	2	\square	$267 \times 185 \times 195$
734 DPZ	-125	125	mBar	25	\bullet	\bullet	\bullet	10	10	-	$269 \times 108 \times 110$
735 DPZ	-250	250	mBar		\bullet	-	\bullet	10	10	-	(as photo on front page)
734 DPZM	-100	100			-	-	\bullet	-	300	-	
735 DPZM	-200	200	mBar	3	-	-	\bullet	-	300	-	$288 \times 104 \times 114$
736 DPZM	-400	400			-	-	\bullet	-	300	-	
744DPZ	-0.9	0.9	Bar	3	\bullet	\bullet	\bullet	-	30	-	$237 \times 100 \times 81$
745DPZ	-1	2	Bar		-	\bullet	\bullet	-	30	-	$237 \times 100 \times 81$
734 DP	25	250			\bullet	\bullet	\bullet	10	10	\square	
735 DP	50	500	mBar	25	-	-		10	10	■	$269 \times 108 \times 110$
736 DP	100	1200	mbar	2.5		\bullet	\bullet	10	10	\square	(as photo on front page)
737 DP	300	3500			\bullet	\bullet	\bullet	10	10	\square	
734 DPM	20	200			-	-	\bullet	-	300	-	
735 DPM	40	400	mBar	3	-	-	\bullet	-	300	-	
736 DPM	100	1000	mBar	3	-	-	\bullet	-	300	-	$288 \times 104 \times 114$
737 DPM	300	3000			-	-	\bullet	-	300	-	
744DP	0.2	2			\bullet	\bullet	\bullet	30	30	30	
745DP	0.4	4	Bar	25	-	-	\bullet	30	30	30	$237 \times 100 \times 81$
746DP	1	10	Bar	2.5		-	\bullet	30	30	30	$237 \times 100 \times 81$
747DP	2	21			\bullet	-	\bullet	35	35	35	
746 DPM	0.7	7			-	-	\bullet	-	300	-	
747 DPM	2	21	Bar	3	-	-	-	-	300	-	$288 \times 104 \times 114$
748 DPM	10	100			-	-	-	-	300	-	
Key to options: - = available - = not available ■ = check availability with HNL Technical Sales											

Output Switch

Output Switch Codes				
Single Switch	Twin Switch $2 \times$ SPDT	Output Switch Rating	Contact Material	
$\mathbf{0 1}$	$\mathbf{-}$	$250 / 480 \mathrm{Vac} 10 \mathrm{~A}, 28 \mathrm{Vdc} 4 \mathrm{~A}$	Silver	Notes
$\mathbf{1 3}$	$\mathbf{2 3}$	$250 \mathrm{Vac} 4 \mathrm{~A}, 28 \mathrm{Vdc} 2 \mathrm{~A}$	Silver	HNL standarde differential microswitch (≈ 5 to 12% of span)
$\mathbf{1 4}$	$\mathbf{2 4}$	$125 \mathrm{Vac} 800 \mathrm{~mA}, 28 \mathrm{Vdc} 800 \mathrm{~mA}$	Gold	
$\mathbf{1 5}$	$\mathbf{2 5}$	$125 \mathrm{Vac} 800 \mathrm{~mA}, 28 \mathrm{Vdc} 800 \mathrm{~mA}$	Gold	Environment free encapsulated low differential microswitch
$\mathbf{1 7}$	$\mathbf{2 7}$	$250 \mathrm{Vac} 4 \mathrm{~A}, 28 \mathrm{Vdc} 2 \mathrm{~A}$	Silver	Environment free encapsulated low differential microswitch
$\mathbf{1 4}$	$\mathbf{2 A}$	$250 \mathrm{Vac} 6 \mathrm{~A}, 28 \mathrm{Vdc} 2.5 \mathrm{~A}$	Silver	HNL standard encapsulated microswitches
$\mathbf{1 B}$	$\mathbf{2 B}$	$250 \mathrm{Vac} 100 \mathrm{~mA}, 28 \mathrm{Vdc} 100 \mathrm{~mA}$	Gold	

Notes on Output Switch Selection:

1. Gold contact microswitches are especially well suited for low voltages and currents, or for applications with low switching frequencies or sulphurous atmospheres. When heavier loads need to be switched preference should usually be given to silver contacts.
2. The use of twin switches will increase the basic reset by 1%. The combined reset band must not exceed 7%.
3. When twin switches are set up to operate as DPDT, simultaneous operation on both rising and falling pressures cannot be guaranteed due to mechanical variations between individual microswitches.
4. The use of output switch codes $1 A, 2 A, 1 B$ and $2 B$ will increase the basic reset by 1%.
5. Output switch code 01 cannot be used with an enclosure having two electrical entries.

Notes:

1. Typical dimensions shown on range table are for a $1 / 4^{\prime \prime}$ internal connection and may increase for alternative connection sizes.
2. Dust and weatherproof ratings are IP66 to BS EN 60529 (IEC 60529).
3. An ' M ' within the range code signifies DP connections suitable for direct mounting of standard equalising manifolds.
4. On some ranges $1 / 2^{\prime \prime}$ NPT connections are via a supplied adaptor.
5. A 'Z' within the range code signifies at or below zero. This is achieved with the use of a stainless steel biasing assembly within the process chamber. If stainless steel is not compatible with the process an alternative ' X ' option is available (e.g. 744 PX instead of 744 PZ).
6. A large number of flanged, chemical seal and alternative threaded connections are available as special options. Please contact HNL Technical Sales for details.

Scale Accuracy \& Setpoint Calibration:

A $0-100$ scale is fitted to all switches and provides an approximate indication of the setpoint relative to the range of the switch. The scale is not intended for precise calibration purposes. For precise calibration the scale should be used for initial guidance and the final adjustment made against an instrument sufficiently accurate to meet the site requirements.

Combined Switching Errors \& Maximum Working Pressure (MWP):

In accordance with BS6134 1991:
The sum of the average switching errors and the operating value repeatability will typically not exceed 0.3% of range span, at setpoints of $10 \%, 50 \%$ and 90% of span, at constant calibration and measurement temperatures.
The maximum working pressure of the Series 700 switches is 0.67 x the proof pressure. It should be noted that diaphragm type switches generally have a high overload capability.

Reset (Switching Differential):

The reset varies throughout the range, normally increasing with setpoint, and the figure quoted in the range table is the switching differential value (as defined in BS6134) expressed as a percentage of the span at the mid range setpoint.

Ambient Temperature Ratings:

Enclosures are rated for continuous use over the temperature range $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, with short term operation down to $-50^{\circ} \mathrm{C}$.
Storage limits for all enclosures are $-50^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$.
Exposure of the enclosure to direct sunlight should be such that the heat gain due to absorption of radiant energy does not cause the enclosure temperature to exceed the recommended maximum. Sufficient signal line cooling must always be provided to ensure that heat conduction from the process will not cause the switch enclosure to operate outside the stated ambient temperature limits.

Temperature Coefficient:

The additional error, relative to a setpoint calibration of $20^{\circ} \mathrm{C}$, will not exceed 0.3% per $10^{\circ} \mathrm{C}$ change within the normal ambient temperature range of the switch enclosure.

Process Options:

For switches fitted with metallic diaphragms, a PTFE ring is incorporated on some ranges to provide additional sealing. Should PTFE not be compatible with the process media please contact HNL Technical Sales for advice on alternatives.

Special Options \& Specifications:

For additional Pressure and DP ranges, degreasing of process wetted materials for oxygen service and accessories, refer to data sheet TD OPT. For additional diaphragms, chamber materials and connections, refer to data sheet TD SPO.

Standards

This product satisfies the requirements of the Low Voltage Directive 73/23/EEC as amended by directive 93/68/EEC by compliance with standards EN60947-1:1991 and EN60947-5-1:1991.

Specifications

Parameter definitions are in accordance with BS6134:1991 (Pressure and Vacuum Switches).

HNL Engineering Ltd comprises three Divisions offering a wide range of products \& services which includes:

Instruments \& Controls

Pressure, DP and Temperature Switches \& Transmitters. Rotary and linear positioners. Flow regulators \& Bubblers. Control Systems.

Precision Machining

Turning, Milling, Drilling, Tapping, Sawing, Welding, Painting, Anodising. From small to large batch sizes in a wide range of materials.

Manifolds \& Valves

Wide range of distribution manifolds in both anodised aluminium and stainless steel. Stainless steel ball valves.
The information contained in this data sheet may be changed without notice.

